How Passive Samplers can Optimize and Reduce the Costs of Environmental Sampling Programs

Rachel Zajac-Fay, M.S. (Geosyntec Consultants) Brent G. Pautler, Ph.D. (SiREM)

MAY 14-16, 2024

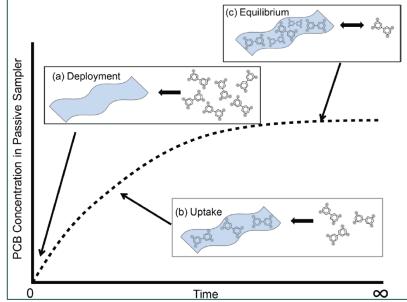
LABORATION

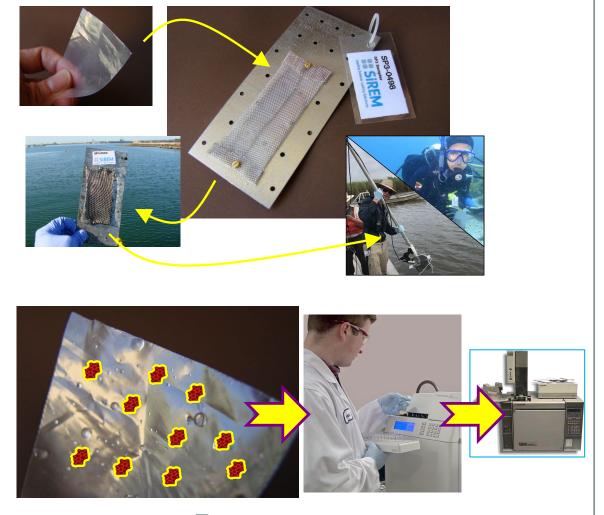
SAME SAMEJETC.ORG

Passive sampling Core Concepts and Advantages

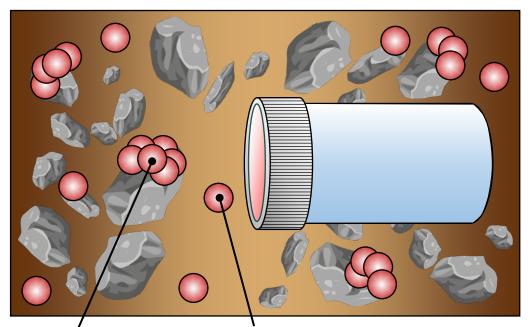
Passive Sampling

- Freely dissolved concentration (C_{free}) measurement
- Used for multiple media
 - Sediment porewater, surface water, stormwater, groundwater
- Provide Critical Data for:
 - Source identification, fate
 - Risk assessment, toxicity identification
 - Stormwater sampling
 - Remediation Design
 - Long Term Monitoring (including groundwater monitoring programs)

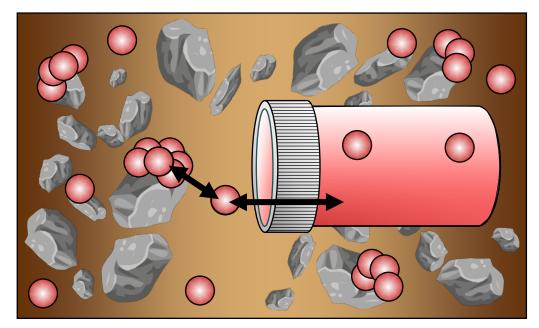

Federal Project Passive Sampling Experience


Fed Agency	Installation	Client/Contract	Technology	Analytes	Year
Navy	Bremerton Naval Base	Geosyntec	SP3™	PCBs & PAHs	2016
Navy	NIWC Clay Targets (ex situ) Study (variety of sites)	Geosyntec	SP3™	PAHs	2016 - 2021
Navy	Marine Corps Base Quantico, VA	Geosyntec	SP3™	PCBs	2016
Navy	Pearl Harbor	Geosyntec	SP3™	PCBs	2018
Navy	Sinclair & Dyes Inlet	NIWC	SP3™	PCBs	2022
Navy	NASNI Puget Sound Shipyard	NIWC	SP3™	PCBs	2022
Navy	Naval Support Facility Indian Head	NIWC	SP3™ & SPeeper™	PCBs + Metals	2022
Navy	Naval Base San Diego, Paleta Creek	ESTCP	SPeeper™	Metals	2022 – 2023
Navy	Washington Naval Yard OU2	Jacobs	SP3™	PCBs	2023
Navy	Amchitka Naval Base, Alaska	Jacobs/Geosyntec	SP3™	PCBs	2024
Navy	NAS Oceana	ESTCP	PFASsive™	PFAS	2024
USACE	Eighteen Mile Creek OU3	ENE Environmental (now WSP)	SP3™	PCBs	2021
USACE	ACW Jackson, TN	USACE (Through Eurofins)	SP3™	PAHs + PCP	2022
USACE	Seneca Army Deport, NY	HGL/Parsons	PFASsive™	PFAS	2023

SAMEJETC.ORG 🖪 @SAMENATIONAL 🔰 @SAME_NATIONAL I #SAMEJETC24 🛅 "SOCIETY OF AMERICAN MILITARY ENGINEERS"



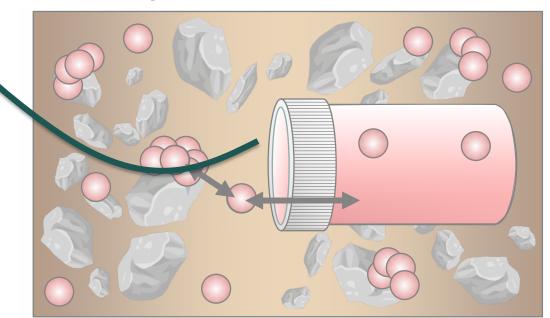
Partitioning Based Samplers: Polymers


Dialysis Based Samplers – Peepers

Unavailable Analyte Freely-dissolved Analyte

> Peeper inserted into sediment matrix

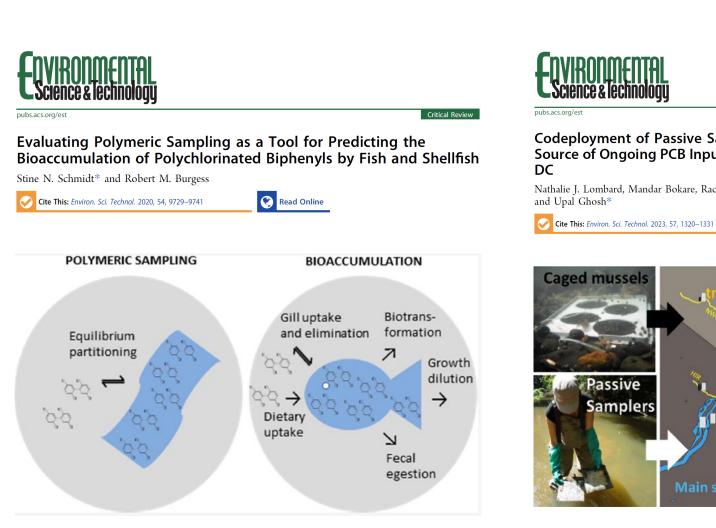
Solution in peeper equilibrates with freely-dissolved species in sediment (days-weeks)



SPeeper[™] – Dissolved Inorganics

Peeper removed from sediment, solution transferred and preserved, measured for target analytes using standard methods for water (e.g., EPA SW846)

Results in ng/L

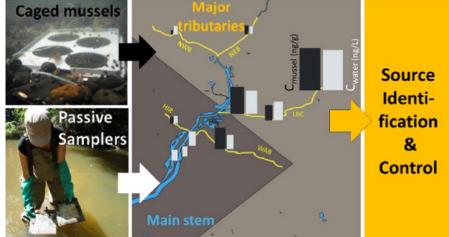


MAY 14-16. 2024

SAME SAMEJETC.ORG

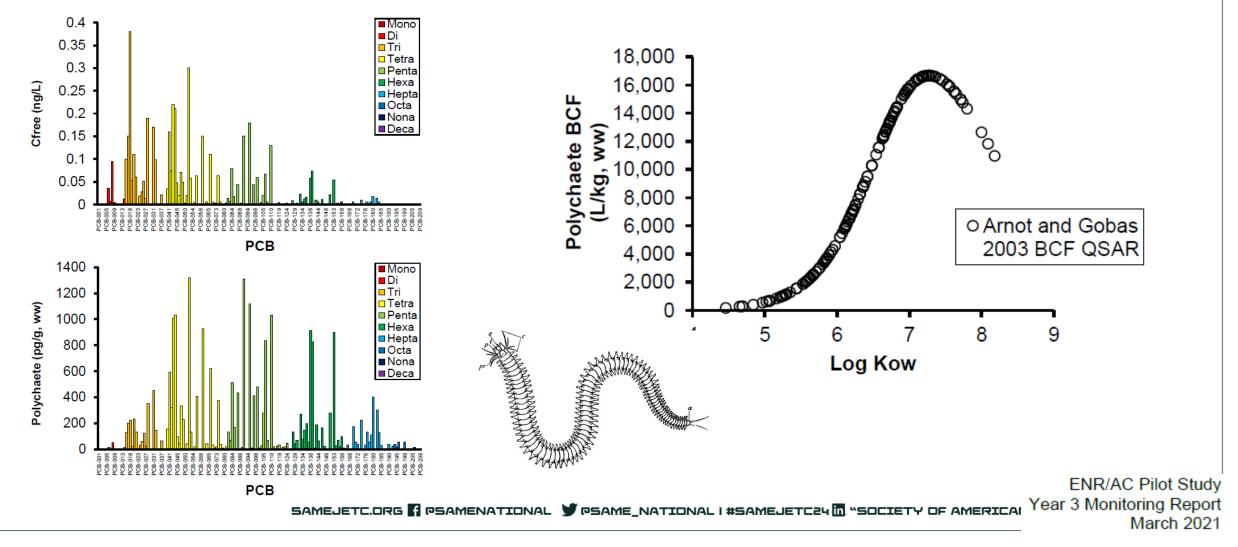
DRLANDD, FL

COLLABORATION

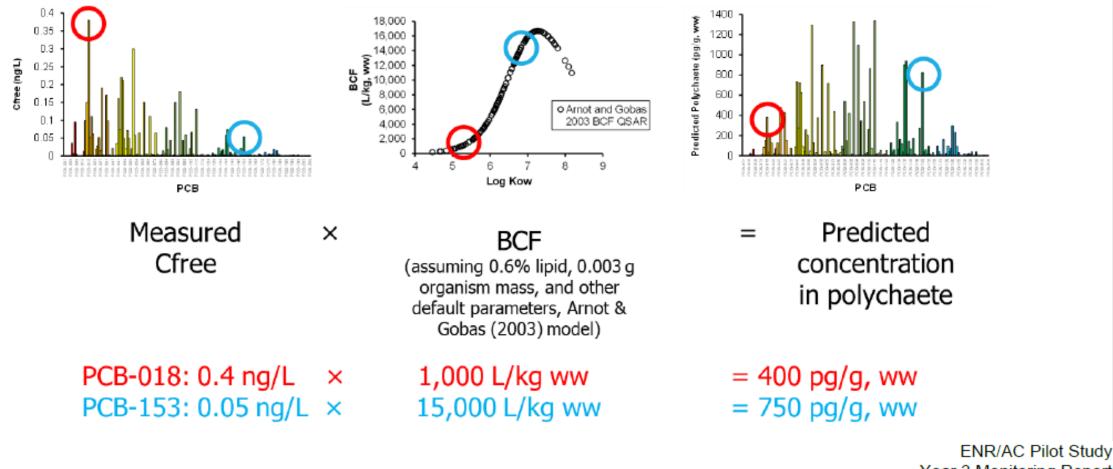

Passive Sampling C_{free}: Bioaccumulation

Codeployment of Passive Samplers and Mussels Reveals Major Source of Ongoing PCB Inputs to the Anacostia River in Washington, DC

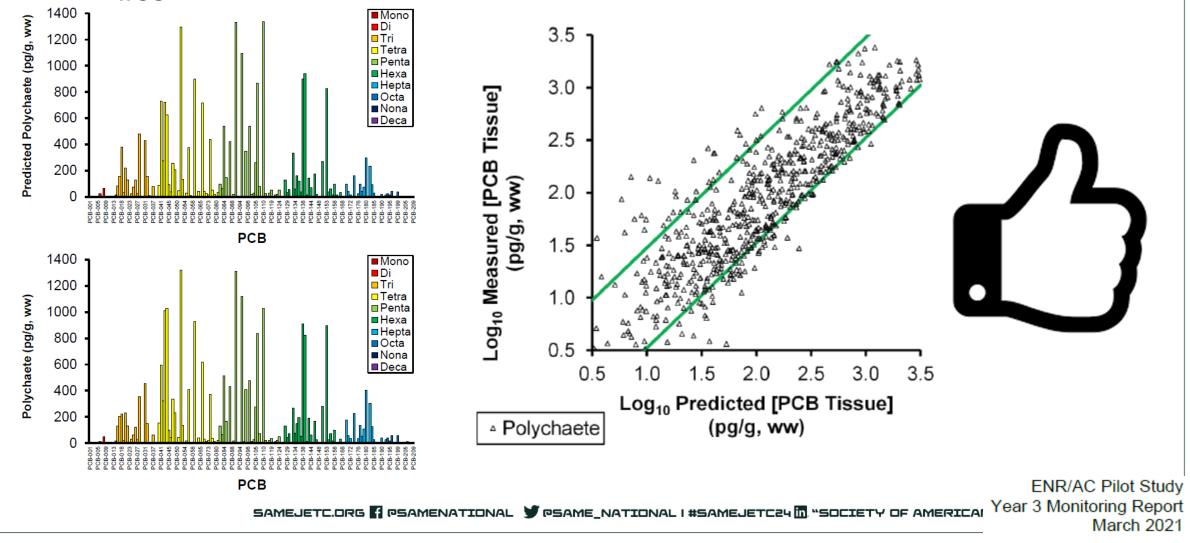
Nathalie J. Lombard, Mandar Bokare, Rachel Harrison, Lance Yonkos, Alfred Pinkney, Dev Murali, and Upal Ghosh*



Article

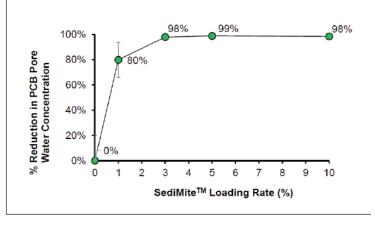


C_{free} Bioaccumulation: Lower Duwamish Waterway


C_{free} Bioaccumulation: Lower Duwamish Waterway

SAMEJETC.ORG SAMENATIONAL SAME_NATIONAL I #SAMEJETC24 III. "SOCIETY OF AMERICAI YEAR 3 Monitoring Report March 2021

C_{free} Bioaccumulation: Lower Duwamish Waterway



JOINT ENGINEER TRAINING CONFERENCE

Amendment Study for PCB immobilization

inner and a second second

- Activated carbon (AC) active cap
- 1%, 3%, 5% & 10% AC and porewater concentration determined via *ex situ* SP3[™]
- Saved \$375,000 in excess AC application

Amendment Study for PCB immobilization

- 6-inch EMNR layer amended with 3% AC placed over site evenly
- In situ SP3[™] samplers deployed for 44 days in 10 locations
- **10- to 20-fold reduction** in bioavailable PCBs in porewater prior to remediation
- Regulatory Authority granted **NO FURTHER ACTION** at the site

MUCCOTTON SE

Former Wood Preserving Site, LA

• PAH exceedances determined from previous work Previous work overestimated the need for corrective action at this site

Overall Goal – Ensure that there are **NO** surface water or sediment impacts on human health or ecosystem

• SP3[™] identified locations and concentrations of COC flux with multiple lines of evidence

manness

\$2M - \$5M in cost savings to client

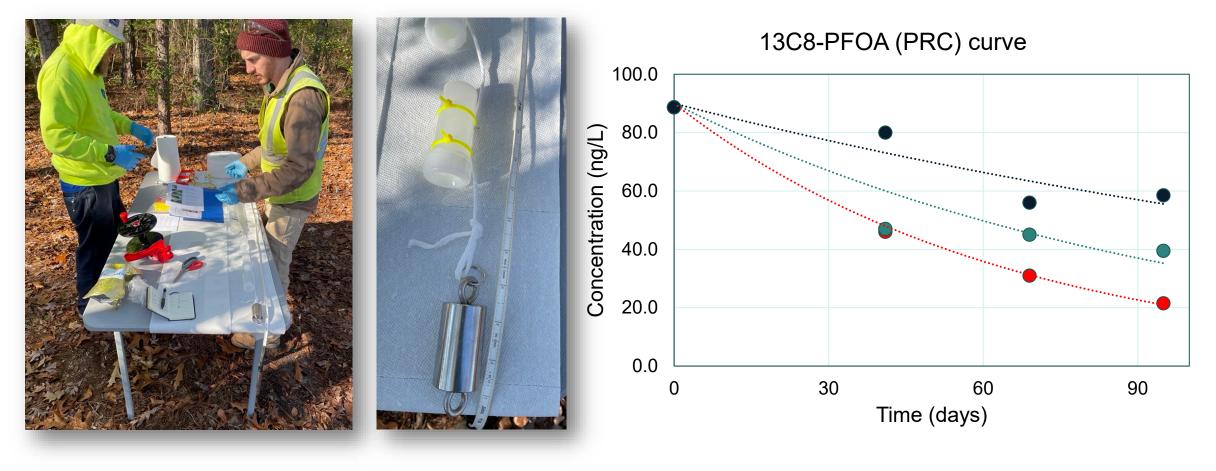
PFASsive[™]: Solution for PFAS Monitoring!

- Medon et al. •
- Environmental Science: Processes & • Impacts, 2023, 25(5) 980-995.

Environment Science Processes & Ir	
PAPER	View Article Online View Journal View Issue
Cite this: Environ. Scl.: Processes Impacts, 2023, 25, 980	A field-validated equilibrium passive sampler for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water†
	Blessing Medon, ^a Brent G. Pautler, ^{*b} Alexander Sweett, ^b Jeff Roberts, ^b Florent F. Risacher, ^{© c} Lisa A. D'Agostino, ^c Jason Conder, ^d Jeremy R. Gauthier, [©] ^e Scott A. Mabury, ^e Andrew Patterson, ^f Patricia McIsaac, ^g Robert Mitzel, ^f Seyfollah Gilak Hakimabadi ^a and Anh Le-Tuan Pham [©] * ^a
	A simple equilibrium passive sampler, consisting of water in an inert container capped with a rate-limiting barrier, for the monitoring of per- and polyfluoroally(substances (PFAS) in sediment pore water and surface water was developed and tested through a series of laboratory and field experiments. The objectives of the laboratory experiments were to determine (1) the membrane type that could serve as the sampler's rate-limiting barrier, (2) the mass transfer coefficient of environmentally relevant PFAS through the selected membrane, and (3) the performance reference compounds (PRCs) that could be used to infer the kinetics of PFAS diffusing into the sampler. Of the membranes tested, the polycarbonate (PC) membrane was deemed the most suitable rate-limiting barrier, given that it did not appreciably adsorb the studied PFAS (which have ≤8 carbons), and that the migration of these compounds through this
	membrane could be described by Fick's law of diffusion. When employed as the PRC, the isotopically labeled PFAS M ₂ PFOA and M ₄ PFOS were able to predict the mass transfer coefficients of the studied PFAS analytes. In contrast, the mass transfer coefficients were underpredicted by Br ⁻ and M ₂ PFPA. For validation, the PC-based passive samplers consisting of these four PRCs, as well as two other PRCs (i.e., M ₄ PFOA and C ₈ H ₂)SO ₃ ⁻), were deployed in the sediment and water at a PFAS-impacted field site. The concentration-time profiles of the PRCs indicated that the samplers deployed in the sediment required at least 6 to 7 weeks to reach 90% equilibrium. If the deployment times are shorter (e.g., 2 to 4 weeks), PFAS concentrations at equilibrium could be estimated based on the concentrations of the PRCs remaining in the sampler at retrieval. All PFAS concentrations determined via this approach were within a factor of two
Received 25th November 2022	the sampler at retrieval. All PFAS concentrations determined via this approach were within a factor of two compared to those measured in the mechanically extracted sediment pore water and surface water

amment and a state

■ PFASsive[™]


Accepted 3rd April 2023 DOI: 10.1039/d2em00483f rsc.li/espi

samples obtained adjacent to the sampler deployment locations. Neither biofouling of barrier nor any physical change to it was observed on the sampler after retrieval. The passive sample developed in this study could be a promising tool for the monitoring of PFAS in pore water and surface wate

JOINT ENGINEER TRAINING CONFERENCE

PFASsive™: Preliminary Groundwater Validation

MAY 14-16, 2024

SAME SAMEJETC.ORG

COLLABORATION

Best Practices for Implementing psds into Field Programs

PFASsive[™] – Field Deployment

- Consider data quality objectives
 - What are we are using this data for?
 - Analytes, sample depth
- Site-specific considerations
 - Waterbody type, water depth, access
 - Deployment type: wading, boat, divers
 - Source, potential fate and transport
- Deployment time

MAY 14-16. 2024

OPERATIO

SAME SAMEJETC.ORG

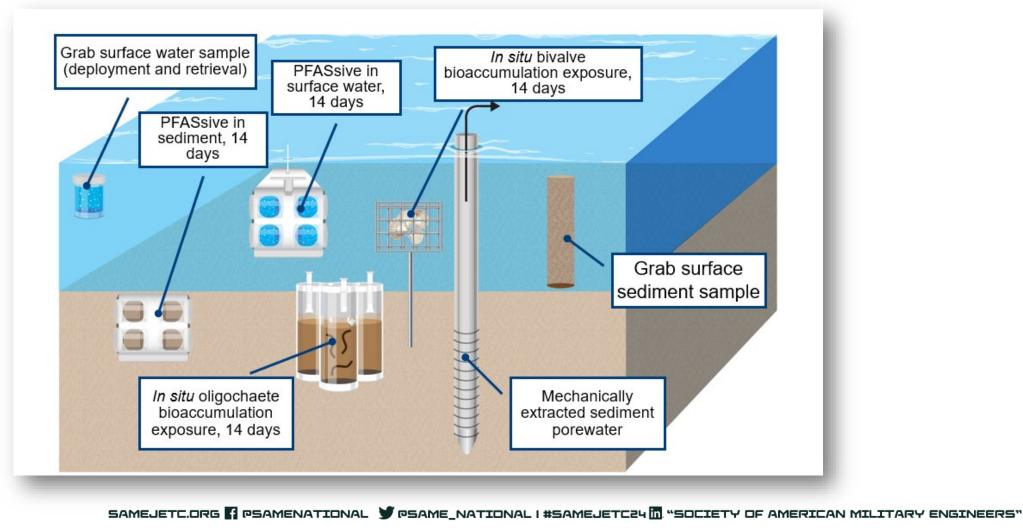
PFASsive[™]: Upcoming Project!

- FY 2023 ESTCP Project Funding
 - \$1M value including additional client funding
 - Freshwater and marine site
 - Grab samples, PFASsive[™], and bioaccumulation testing

- Additional Work outside of ESTCP Scope
 - Marine Design & Additional PRCs
 - Non-targeted PFAS analysis from PFASsive[™] with Environment & Climate Change Canada

The PFASsive[™] Advantage

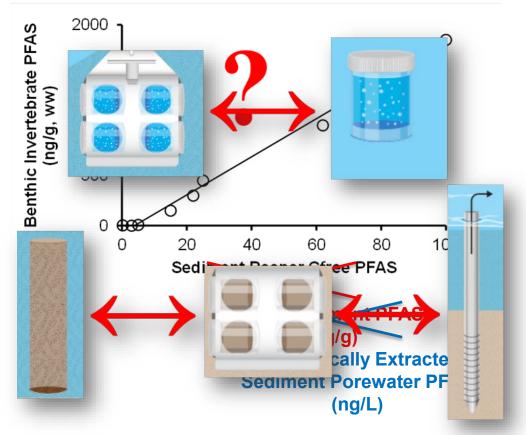
- Dialysis samplers in use for evaluating availability of inorganics for over 4 decades
 - Simple approach... easy to make, deploy, and analyze
- Confirmed design for use in sediment:
 - ✓ PFAS-inert chamber and membrane
 - One-compartment first-order kinetics, 2-4 week deployments
 - Performance Reference Compound (PRC) to verify sampling rates for each sample
 - Rugged and durable Can survive being dropped on the deck of a boat


PFASsive™: ESTCP ER23-7741

Objective: Demonstrate and validate PFASsive at two DoD Sites

Task 1 Demonstrate an <i>in situ</i> field deployment	 Logistics at a real world-DoD PFAS site, including preparation, deployment, retrieval, processing, costs, quality assurance/quality control (QA/QC), and data analysis
Task 2 Validate the ability of <i>in situ</i> passive sampler results in sediment porewater	 Compare freely dissolved concentration (Cfree) of PFAS measured with the passive samplers to: PFAS in mechanically extracted co-located porewater samples PFAS in benthic organisms exposed in co-located sediment
Task 3 Validate the ability of <i>in situ</i> passive sampler results in surface water	 Compare Cfree to: PFAS in co-located surface water grab samples PFAS in aquatic organisms exposed in the surface water column

PFASsive™: ESTCP ER23-7741



PFASsive™: ESTCP ER23-7741

- How well does PFASsive Cfree PFAS data reflect PFAS bioavailability?
- Are PFASsive Cfree PFAS data better than other measures in terms of predicting PFAS bioavailability?
- Do PFASsive Cfree PFAS data relate to other traditional point sampling approaches?

Any advantage to the "integrative" nature of passive samplers?

mannessa

Conclusions: Data Driven Decisions

- Can be used throughout site investigation timeline
 - Multi-media sampling abilities
- Established Sampling and Analytical Protocols
 - ✓ Mature technology, commercially available
 - Ability to test amendment performance
 - ✓ Less field equipment
- High Data Quality
 - More accurate risk-assessment
 - ✓ Smart, Data-Driven Decisions
- Cost Savings, Waste reduction, "Green Solution"
 - \checkmark Less in shipping, less intensive field work
 - ✓ Reduction in unnecessary remediation

MULLIN COM

Thanks for Listening!

Reach out if you are interested in learning more and visit Geosyntec at Booth 909

Visit SiREM's Website:

Brent Pautler, PhD Guelph, Ontario (519) 515-0837 bpautler@siremlab.com

Rachel Zajac-Fay, MS Tampa, Florida (813) 379-4381 rzajacfay@geosyntec.com

Sign up for a free webinar on PFASsive hosted by Eurofins and SiREM Registration

